

2025 Integrated Resource Plan (IRP)

Public Advisory Meeting #1 January 29, 2025

Agenda and introductions

Stewart Ramsay, Managing Executive, Vanry & Associates

Agenda

Time	Торіс	Speakers
Morning Starting at 10:00 AM	Safety Message and Virtual Meeting Protocol	Claire Rice, Senior [
	Welcome and Overview of AES Indiana	Brandi Davis-Handy
	Overview of IRP & Resource Planning Model	Erik Miller, Director,
	2022 IRP Recap	Erik Miller, Director,
	Overview of Existing Resources and Replacement Resource Options	Erik Miller, Director,
Break 11:45 AM – 12:15 PM	Lunch	
Afternoon Starting at 12:15 PM	Data Center Potential	Erik Miller, Director,
	Baseline Energy and Peak Forecast	Mike Russo, Foreca
	Electric Vehicle (EV) and Solar PV Forecasts	Woody Zhu, EV & P
	DSM Market Potential Study Introduction	Jeffrey Huber, Overa

Final Q&A and Next Steps

Director, Corporate Affairs & Impact, AES Indiana

, President, AES Indiana

Resource Planning, AES Indiana

Resource Planning, AES Indiana

Resource Planning, AES Indiana

Resource Planning, AES Indiana

ast Consultant, Itron

V Modeling Forecasting, Carnegie Mellon University

all Project Manager and MPS Lead, GDS Associates

IRP team introductions

AES IRP Leadership Team

Brandi Davis-Handy, President, AES Indiana Guga Garavaglia, Chief Financial Officer, AES US Utilities Patrick Maguire, Senior Director, Commercial, AES US Utilities

AES Indiana IRP Planning Team

Erik Miller, Director, Resource Planning, AES Indiana Ryan Yang, Load Forecasting Analyst, AES Indiana Michael Hardie, Resource Planning Analyst, AES Indiana Brent Selvidge, Engineer, AES Indiana Quintin Thompson, DSM Research Analyst, AES Indiana Chad Rogers, Director, Regulatory Affairs, AES Indiana Claire Rice, Senior Director of Corporate Affairs and Impact, AES Indiana

AES Indiana IRP Partners

Eric Fox, Director, Forecasting Solutions, Itron Mike Russo, Forecast Consultant, Itron Woody Zhu, Assistant Professor of Data Analytics, Carnegie Mellon University Jeffrey Huber, Overall Project Manager and MPS Lead, GDS Associates Jacob Thomas, Project Manager, GDS Associates Hisham Othman, Senior Vice President, Quanta Technologies Christina Owens, Director, Resource Planning, ACES Will Vance, Director, Capacity Markets and Fundamental Analysis, ACES Stewart Ramsey, Managing Executive, Vanry & Associates

AES Indiana Legal Team

Nick Grimmer, Indiana Regulatory Counsel, AES Indiana Teresa Morton Nyhart, Counsel, Taft Law

Virtual meeting protocols and safety

Claire Rice, Senior Director, Corporate Affairs and Impact, AES Indiana

Safety message for virtual meetings

Space heater safety tips

- \rightarrow Always place a space heater on a hard, level surface.
- \rightarrow Keep your heater at least three feet away from anything flammable.
- \rightarrow Never leave a space heater running when a room is unoccupied.
- \rightarrow Only plug your space heater directly into a wall outlet. Never use an extension cord or power strip.
- \rightarrow Don't place space heaters under desks or areas with little ventilation.

Virtual meeting protocol

Questions

- → Your candid feedback and input is an integral part to the IRP process.
- → Questions or feedback will be taken at the end of each section.
- → Feel free to submit a question in the chat function at any time and we will ensure those questions are addressed.

Audio

- \rightarrow All lines are muted upon entry.
- → For those using audio via Teams, you can unmute by selecting the microphone icon.
- → If you are dialed in from a phone, press *6 to unmute.

Video

→ Video is not required; however, if your camera is on, please refrain from distractions.

Welcome & overview of AES Indiana

Brandi Davis-Handy, President, AES Indiana

The future of energy is here.

AES overview: Global Scale

36,740 MW

Gross MW in operation*

*25,159 proportional MW (gross MW multiplied by AES' equity ownership percentage).

2.6 million Customers served

9,600 people Our global workforce

3,978 MW

Generation capacity under construction or with signed PPAs

\$45 billion

Total assets owned & managed

Recognized for our commitment to sustainability

528

square miles

530,000

customers

Lakefield PPA (MN) – 200 MW

Hoosier Wind – 100 MW

Georgetown – 150 MW

REP Projects – 96 MW

Petersburg Generation - 1,072 MW

Petersburg Energy Center - 250 MW solar + 45 MW BESS Pike County Energy Storage - 200 MW BESS

3,956 MW of Generation

AES Indiana overview: Local impact

Customer centricity

Create exceptional customerfocused experiences

Economic and community development

Community investments improving quality of life

Transforming to cleaner, greener technologies

Accelerating the future of energy, together

Reliability

Modernizing our grid

Accelerating our Energy Transition

aes

Overview of IRP & resource planning model

Erik Miller, Director, Resource Planning, AES Indiana

What is an Integrated Resource Plan?

Integrated Resource Plan (IRP) in Indiana > 170 IAC 4-7-2

- \rightarrow 20-year look at how AES Indiana will serve load
- \rightarrow Submitted every three years
- \rightarrow Plan created with stakeholder input
- \rightarrow Modeling and analysis culminates in a preferred resource portfolio and a short-term action plan

What is a preferred resource portfolio?

 \rightarrow The term 'preferred resource portfolio' means the utility's selected long term supply-side and demand-side resource mix that safely, reliably, efficiently, and cost-effectively meets the electric system demand, taking cost, risk, and uncertainty into consideration." IAC 4-7-1-1-cc

Stakeholders are critical to the process.

AES Indiana is committed to providing an engaging and collaborative IRP process for its stakeholders:

- → Five Public Advisory Meetings for stakeholders to engage throughout the process
- → Five Technical Meetings available to stakeholders with nondisclosure agreements (NDA) for deeper analytics discussion
- \rightarrow Planning documents and modeling materials will be shared with stakeholders with NDAs upon request
- \rightarrow After full consideration of stakeholder input, the Preferred Resource Portfolio will be announced in Q4 of 2025.

2025 IRP Timeline

portfolio & short-term

2025 IRP Process Roadmap

- \rightarrow Circuit Level Analysis
- → Assess EV, DG & DER Impacts
- \rightarrow Non-wires Alternatives

Production Cost Modeling, Stochastic Analysis & PVRR

- \rightarrow Portfolio Dispatch Analysis & calculation of PVRR
- \rightarrow Risk Analysis

Portfolio Evaluation & Scorecard

- \rightarrow Evaluation of the Scorecard & the Five Pillars
- → Identify Preferred Resource Portfolio

IRP Submitted Nov. 1, 2025

IRP-related Filings

- \rightarrow Certificate of Public **Convenience and Necessity** (CPCN)
- → Demand Side Management Plan

How exactly does IRP modeling work?

We are using the "Five Pillars" to identify resources to fill in any generation shortfalls that we have during the planning period.

IRP identifies resources that

IRP scorecard analysis & components

Scorecard that evaluates the portfolios using the Five Pillars of Utility Electric Service to select the Preferred Resource Portfolio		Category	Metric	Description
		Affordability	30- to 50-yr PVRR & 10-yr PVRR	Longer planning period to capture end effects from long life tech (SMR)
•	Coore could an alwais will be rearformered and the Dece		CO2 emissions	Total CO ₂ emissions over planning period
\rightarrow	Case set of portfolios		SO2 emissions	Total SO ₂ emissions over planning period
		Environmental	NOx emissions	Total NOx emissions over planning period
 → Scorecard categories alig Utility Electric Service as • Affordability • Environmental Sust • Reliability 	Scorecard categories align with the Five Pillars of Utility Electric Service as required by statute	Sustainability	Water user	Total water use over planning period
	 Affordability 		Coal Combustion Products (CCP)	Total CCP emissions over planning period
	 Environmental Sustainability Reliability 		Clean energy progress	% of clean energy in portfolio by 2024
	 Resiliency Stability 	Reliability, Resiliency & Stability	Reliability score	Quanta Technology will perform reliability analysis on candidate portfolios
\rightarrow	Additional categories that measure the Risk &		General cost opportunity **Stochastic analysis**	P5 (Mean – P5)
Opportunity and Economic Impact comply with IURC rules	comply with IURC rules	Risk & Opportunity	General cost risk **Stochastic analysis**	P95 (P95 – Mean)
\rightarrow	Scorecard evaluation used to select the Preferred		Market exposure	20-yr sales & purchases
	Resource Portfolio and Short Term Action Plan	Economic impact	TBD	TBD

EnCompass Overview

- → EnCompass models thermal, renewable, storage, nuclear and load resources with hourly granularity.
- → Model will be used for capacity expansion analysis to make longterm resource decisions based on scenario input assumptions.
- → EnCompass will calculate the present value revenue requirement of each portfolio.
- → Through the use of stochastic analysis, EnCompass will be used to understand the risk associated with portfolios.

Capital Projects	
Capacity	
Environmental Prog	rams
Unit Commitment	
Energy and Ancillar	у
Outage Schedule	

Encompass power planning software

Capital Projects

Multiple annual plans with capital costs and constraints

Capacity

Regional reserve margin requirements with demand curves

Environmental Programs

Renewable portfolio standards, mass- and rate-based emissions

Unit Commitment

Full commitment costs and constraints, with sub-hourly capability

Energy

- Dispatch Blocks
- Fuel Blending
- Ramp Rates
- Nodal/zonal transmission

Ancillary Services

- Spinning Reserve
- Non-Spinning
- Regulation Up/Down
- Bids and costs

Outage Scheduling

Maintenance optimization to minimize regional reliability risk

Advantages of EnCompass

Key Advantages of Utilizing EnCompass

- \rightarrow Quick run times
 - \rightarrow Allows for robust scenario analysis
 - \rightarrow Provides expedient model feedback
- \rightarrow Straightforward capacity expansion
 - → Deterministic capacity expansion allows for more intuitive cause and effect results
- \rightarrow User control of modeling parameters
 - \rightarrow MIP Stop Basis is a user input for capacity expansion
 - \rightarrow Stochastic draws can be specified by user
- \rightarrow Model Transparency
 - → Complete models can be fully shared with other EnCompass users
 - \rightarrow Spreadsheet files can be shared with non-users

2022 IRP recap

Erik Miller, Director, Resource Planning, AES Indiana

iana

2022 IRP – Short-term action plan

AES Indiana's short-term action plan balances reliability, affordability and sustainability by:

Repowering coal-fired generation

Repowering coal-fired generation in 2025/2026 after repowering Petersburg Units 3 and 4 to natural gas

Adding renewable generation

Add renewable generation for capacity and energy, which includes:

- \rightarrow 200 MW ICAP of battery energy storage at Petersburg to fill winter capacity position in 2025
- \rightarrow Additional wind and solar as energy replacement for Petersburg

Implementing 3-year DSM action plan

Implementing three-year DSM action plan that targets an annual average of 130,000 – 134,000 MWh of energy efficiency (approximately 1.1%) of 2021 sales) and three-year total of 53 MW summer peak impacts of demand response

Petersburg repowering of Units 3 & 4

Project Information

- → Type: Steam turbine units repowered from coal-fired to gas-fired operation
- \rightarrow Size: Approximately 1,000 MW of capacity maintained
- \rightarrow COD: Unit 3 in 2026 first half, Unit 4 in 2026 second half
- \rightarrow Location: Petersburg, IN
- → Project Manager: Internal with EPC contractor

Repowering Petersburg Units 3 & 4 from coal- to gasfired operation will maintain the capacity value of units.

Petersburg Conversion

~1,000 MW

COD 2026/2027

Petersburg, IN

Pike County Battery Energy Storage System

Project Information

- → Type: Battery Energy Storage System (BESS)
- → Size: 800 MWhac BESS (200 MWac, 4-hour discharge power capacity)
- → COD: 2025
- \rightarrow Location: Pike County, IN
- \rightarrow Developer: Internal with EPC contractor

Pike County BESS will initially contribute 190 MW of capacity in each season to AES Indiana's portfolio.

Pike Co. BESS

200 MW 4-hour BESS

COD Q1 2025

Petersburg, IN

Crossvine Solar + BESS

Project Information

- \rightarrow Type: Solar and battery energy storage facility
- → Size: 85 MWac ICAP coupled with a 340 MWh DC battery energy storage system (85 MWac, 4-hour discharge power capacity)
- → COD: Q2 2027
- \rightarrow Location: Dubois County, IN
- → Developer: BP Lightsource

Crossvine will initially contribute 80 MW of winter capacity to AES Indiana's portfolio.

Crossvine Solar + BESS

85 MW Solar + 85 MW 4hour BESS

COD Q2 2027

Jasper, IN

Portfolio changes will reduce carbon intensity by over 65% by 2030.

After repowering Petersburg Units 3 & 4 in 2026, AES Indiana will no longer have coal-fired resources in its fleet.

Overview of existing resources

Erik Miller, Director, Resource Planning, AES Indiana

AES Indiana current generation mix

Petersburg 3 & 4 repowering

- → Petersburg Units 3 & 4 will be repowered from using coal to using natural gas for fuel during 2026; Unit 3 repowering in the first half 2026 and Unit 4 repowering in second half.
- MISO capacity accreditation of the \rightarrow repowered units is expected to remain approximately one-for-one post conversion.
- \rightarrow Table includes estimated accreditation using current MISO methodology and does not reflect future accreditation changes from MISO.

Coal Units	Technology	ICAP (MW)	Summer Accreditation (MW)	Winter Accreditation (MW)	In-Service Year	Estimated Last Year In-Service
Petersburg						
Pete ST 3 Coal	Coal ST (2025)	532	465	526	1977	2026
Pete ST 4 Coal	Coal ST (2025)	538	466	524	1986	2026
Pete ST 3 Gas	Gas Steam Turbine (Conversion in 2026)	532	465*	526*	1977	2042
Pete ST 4 Gas	Gas Steam Turbine (Conversion in 2026)	538	466*	524*	1986	2042
	Total Gas:	1070	931	1050		
	Total Coal:	1070	931	1050		

*Capacity accreditation expected to improve slightly after repowering due to improvement in auxiliary load of the units.

Existing gas resources

	ICAP (MW)	Summer (MW)	Winter (MW)
CCGT	682	667	556
СТ	436	414	511
ST	1688	1342	1627

→ Table includes estimated accreditation using current MISO methodology and does not reflect future accreditation changes from MISO.

Gas Units	Technology	ICAP (MW)	Summer Accreditation (MW)	Winter Accreditation (MW)	In-Service Year	Estimated Last Year In- Service	
Eagle Valley							
EV CCGT Combined Cycle Gas Turbine		682	667	656	2018	2055	
Harding Stree	et						
HS ST 5	Gas Steam Turbine	96	80	106	1958	2030	
HS ST 6	Gas Steam Turbine	102	96	77	1961	2030	
HS ST 7	Gas Steam Turbine	420	236	395	1973	2033	
HS CT 4	Combustion Turbine	73	70	77	1994	2044	
HS CT 5	Combustion Turbine	75	69	85	1995	2045	
HS CT 6	Combustion Turbine	146	142	178	2002	2052	
HS GT1 & GT2	Oil/Diesel	33	28	38	1973	TBD	
Georgetown							
GTOWN GT1	Combustion Turbine	72	69	86	2000	2050	
GTOWN GT4 Combustion Turbine		69	65	86	2001	2052	
	Total Gas: Total Oil:	2805 33	2422 28	2694 38			

Existing & planned renewable resources

Renewables & BESS	Technology	ICAP (MW)	Summer Accreditation (MW)	Winter Accreditation (MW)	In-Service Year	Estimated Last Year In-Service	→ 	Lakefield Win Transmission a Treceives no ca From MISO to A	d has no nd therefo pacity cre AES	firm ore dit
Hardy Hills Solar		405	00	40	0000	TOD	\rightarrow I	Rate REP sol	ar receive	s no
Hardy Hills Solar	Solar	195	98	10	2023	IBD	(capacity credit	from MIS	O;
Petersburg Energy Center Solar + Storage							1	to load in the F	s as a redi PRA	
PEC Solar	Solar + BESS	250	125	13	2025	TBD	\rightarrow (current MISO	capacity c	redit
PEC BESS	Solar + BESS	180 MWh, 45 MW 4-hr	43	43	2025	TBD	ļ	evels for rene These values	wable reso will likely f	ources. all
							(over time as re	enewable	thin
Pike County Energy Storage								MISO.		
Pike County BESS	BESS	800 MWh, 200 MW 4-hr	190	190	2025	TBD	\rightarrow	Table includes	estimated	d
							e e e e e e e e e e e e e e e e e e e	VISO method	bloav and	does
Crossvine Solar + BESS							I	not reflect futu	re accredi	tation
Crossvine Solar	Solar	85	43	4	2027	TBD	(changes from	MISO.	
Crossvine BESS	BESS	340 MWh, 85	81	81	2027	TBD			0	
							(MW	ICAP (MW) Summer (MW)	(MW)
Hoosier Wind							Wind	300	16	18
Hoosier Wind (IN)	Wind	100	16	18	2011	2031	Solar	626	313	46
							Storage	330	330	330
PPAs										
Lakefield Wind (MN)	PPA	200	0	0	2009	2029				
Rate (REP Solar)	PPA	96	48	19	Varies	Varies		a	aes Indiana	
	Total:	1256	1034	833	Total: 1256 1034 833					

Existing DSM Resources

DEMAND RESPONSE

Load Modifying Resources	24-25 Summer Capacity Value (MW)	\rightarrow
Air Conditioner Load Management (ACLM)	43.1	\rightarrow
Rider 17	1.8	\rightarrow
Rider 14	8.9	

ENERGY EFFICIENCY

Avg annual incremental program savings of 1.1% per year of 2024 sales

Savings of approximately 8.4% of 2024 sales from measures installed to date

11 DSM programs planned for 2025 and 2026

Replacement resource options

Erik Miller, Director, Resource Planning, AES Indiana

Commercially available replacement resources

DSM/EE

 \rightarrow EE & DR measures bundled into tranches for planning model selection

 \rightarrow Land-based wind

Storage

- \rightarrow Stand alone front-of-meter
- \rightarrow Long duration storage
- 36 Solar + storage

Natural gas

- \rightarrow CCGT
- \rightarrow CT
- \rightarrow Reciprocating Engine

 \rightarrow Utility-scale

Nuclear

- → Small Modular Reactors
- → Advanced Reactors

Data center potential

Erik Miller, Director, Resource Planning, AES Indiana

Data center load potential

AES Indiana will consider data center load scenarios in the 2025 IRP of up to 4GW by the mid-2030s.

Data Center Load will be added to the load forecasts provided by Itron and considered in the IRP Scenario Analysis.

Still *to be determined* if Base/Reference Case Scenario will include data center load potential. Regardless, AES Indiana will include a no data center load scenario as one of the scenarios in the IRP Scenario Analysis.

 Data Center Load Example 3: +4GW

 Data Center Load Example 2: +2GW

 Data Center Load Example 1: +1GW

 Itron's load forecasts will include economic, efficiency, electric vehicle and customer solar impacts; Data Center load added to Itron's load forecasts

 2033
 2034
 2035
 2037
 2038
 2039
 2041
 2042
 2043
 2044
 2045

 ad + Data Center 1
 --- Load + Data Center 2
 ---- Load + Data Center 3
 ---- Load + Data Center 3

Starting IRP portfolio with data center example

Baseline energy and peak forecast

Michael Russo, Forecasting Consultant, Itron

Sales, energy, and demand trends

AES Indiana customer class mix

AES Indiana serves over 530,000 customers across residential, commercial, and industrial customer classes. The residential class accounts for nearly 90% of the customers and 39% of system sales. Small C&I sales are 14%. Large C&I sales 47%.

Historical Energy, Peak, and Customer Trends

- \rightarrow Strong customer growth
- \rightarrow Slowing decline in energy and peaks
- \rightarrow Energy and peaks have flattened 2019-2023 compared to 2013-2018.

Residential customer and sales trends

- \rightarrow Strong customer growth due to strong population and household formation in and around Indianapolis.
- \rightarrow Continued average use decline due to federal codes and AES energy efficiency programs

44

Residential tariff class average use

\rightarrow Use per customer declining across all tariff classes

- \rightarrow Federal codes and standards
- \rightarrow Increase in multi-family homes (decline in ft² per household)
- \rightarrow AES Energy Efficiency (EE) **Program Savings**
- \rightarrow Since the 2020 COVID induced increase, use per customer continues to decline

h								
Rate).7% 1%								
1%	2016	2017	2018	2019	2020	2021	2022	2023
RS Avg	S Avg. Use ——RH Avg. Use ——RC Avg. Use							

Small C&I sales and customer trends

- → Customer growth has slowed in the last 3 years
- → Like residential, downward pressure on usage due to federal codes and AES EE program savings
- \rightarrow Sharp drop in 2020 sales due to COVID

MWh

Large C&I sales and customer trends

- \rightarrow Comprised of the SL, PH, PL, and High Load factor tariffs
- \rightarrow SL tariff is made up of approximately 4,100 large commercial customers
- \rightarrow The remaining customers are mainly industrial customers with a handful large load customers having a significant impact on sales and demand.
- \rightarrow Sharp drop in 2020 sales due to COVID
- \rightarrow Efficiency improvement due to AES EE program savings and customer run EE programs

	5,100	
	4,600	-
	4,100	
	3,600	
^	3,100	
nin	2,600	
5	2,100	
	1,600	
	1,100	
	600	
	100	L
		201

- 7,500,000
- 7,000,000
- 6,500,000
- ≨ ^{6,000,000} ≨ _{5,500,000}
- 5,000,000
- 4,500,000
- 4,000,000

											_
			Large	C&I Ci	ustom	ers					
							Avg	Annua	al Grov	/th	
							Period			Rate	
							2013-2	3		-0.5%	
				1	1	1			1		ł
13	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	

Why is residential and commercial use declining ?

Residential end-use intensities have been declining across nearly all end-uses except miscellaneous. Over the last 10 years:

- → Heating down 0.7%
- \rightarrow Cooling down 0.4%
- → Base down 0.2%

Similar trends in the commercial sector with the strongest decline in lighting and computer related loads. Over the last 10 years:

- \rightarrow Heating down 2.3%
- \rightarrow Cooling up 0.2%
- → Base down 1.4%

48

Significant energy efficiency (EE) program activity

Energy Efficiency programs have had a significant impact on sales
→ Reduces residential average use by nearly 9% over the last ten years
→ Reduces small C&I sales by 18%
→ Reduces large C&I sales by 9%

Modeling approach

BASELINE ENERGY AND PEAK FORECAST

Baseline modeling approach

- \rightarrow Estimate tariff-class level sales and customer models from historical billed sales data
- \rightarrow Sales/energy driven by households, economic forecasts, expected weather conditions, price, and enduse efficiency improvements
- \rightarrow End-use demand drives system peak demand

Monthly sales and customer models are estimated for:

- \rightarrow Residential Tariffs
- \rightarrow Commercial Tariffs
- \rightarrow Industrial Tariffs
- Other Tariffs \rightarrow

Monthly peak model driven by end-use energy forecasts

- \rightarrow The Baseline forecast excludes behind the meter solar, electric vehicle loads, and future EE program savings
- Solar and electric vehicles will be added to forecast depending on IRP scenario \rightarrow
- \rightarrow EE program savings are selectable in the IRP model and, therefore, need to be removed from the IRP load forecasts.

Rate class models

- \rightarrow Models estimated by tariff class billed sales and customer data
- \rightarrow Monthly model, estimated for the period January 2011 to Sept 2024*

\rightarrow 5 residential customer classes

- RS, RC, RH, CR, Residential APL (automatic protective lighting)
- Average use and customer models

\rightarrow 6 small C&I customer classes

- SS, SH, SE, CB, UW, Commercial APL (automatic protective lighting)
- Sales and customer models

\rightarrow 7 large C&I industrial customer classes

- SL, PL, PH, HL1, HL2, HL3, Industrial APL (automatic protective lighting)
- Sales and customer models
- \rightarrow Structured end-use models that incorporate end-use intensities as well as economic drivers

*High load factor and lighting tariff models are estimated starting in 2018

Statistically adjusted end-use approach (SAE)

- \rightarrow Objective:
 - → Develop an econometric approach that incorporates the best characteristics of an econometric and end-use modeling framework
- \rightarrow Accounts For:
 - → Economic impacts (e.g., household income and size, price impacts)
 - → End-Use Structural changes (e.g., saturation and efficiency trends, housing square footage, thermal shell integrity improvements)
 - \rightarrow Weather impacts
- → Statistical Framework:
 - \rightarrow Ideally, one model for budget and long-term forecasting

Residential SAE average use model

End Use Stock	 → Thermal Efficiency → Home Square Footage → AC Saturation → Central → Heat Pump → Room AC → AC Efficiency 	 → Thermal Efficiency → Home Square Footage → Heating Saturation → Resistance → Heat Pump → Heating Efficiency
Utilization	 → Real Income → Price → Household Size → Cooling Degree Days 	 → Real Income → Price → Household Size → Heating Degree Days
Result	Cooling Use	Heating Use
Tarifflo	Avallse.	

Tariff Level AES Energy Efficiency Savings $AvgUse_{m} = a + b_{c} \times XCool_{m} + b_{h} \times XHeat_{m} + b_{o} \times XOther_{m} + b_{d} \times EEm + e_{m}$

54

Commercial SAE sales model

Tariff Level AES Energy Efficiency Savings

 $MWh_m = a + b_c \times XCool_m + b_h \times XHeat_m + b_o \times XOther_m + b_d \times EEm + e_m$

Residential customer drivers

- → Moody Analytics (October 2024), economic forecast for Marion county and Indianapolis MSA.
- → Indy households are more highly correlated with AES residential customers than Marion county.

2.0%

1.5%

1.0%

0.5%

0.0%

-0.5%

-1.0%

-1.5%

-2.0%

Annual Growth Rate

Residential economic drivers

- → Weighted household variable drive the residential customer forecast. 75% weight on Indy household variable and 25% on Marion county
- → Expected household growth is slightly stronger than the last ten years

→ Household income influences customer use → Imposed income elasticity of 0.2

57

C&I economic drivers

- → Output and employment concepts are weighted into a single economic variable.
- \rightarrow Weights vary by tariff class

→ Slower employment growth in the out years. Implies higher long-term productivity.

Residential end-use intensity projections

- → End-Use intensities based on enduse saturation and average stock efficiency derived from Energy Information Administration's (EIA) 2023 Annual Energy Outlook (AEO) for East North Central Census Division.
- → Residential calibrated to AES service area based on historical appliance saturation surveys and DSM potential study.

Avg. Annual Growth					
End-Use	Rate				
Heating	-0.5%				
Cooling	0.0%				
Base	0.2%				

Commercial end-use intensity projections

- → End-Use intensities (kWh per square ft) projected for 9 end-uses and 11 building types
- → Derived from EIA's 2023 Annual Energy Outlook (AEO) for East North Central Census Division.
- → Building-type intensities weighted to the AES service area based on AES commercial sales
- → Projected efficiency gains in lighting and ventilation have the largest impact on base use

Temperature trends

- \rightarrow Average annual temperature is increasing .05 degrees per year or 0.5 degrees per decade
- \rightarrow Consistent with temperature trends across the country 0.4 degrees to 1.2 degrees per decade
- \rightarrow Minimum temperature increasing twice as fast as the average temperature. No increase in the maximum temperature

1960

1965

1970

61

Trending degree days

 \rightarrow Increasing average temperature translates into 0.3% annual growth in cooling degree days

days

\rightarrow And 0.4% annual decline in heating degree

Non-SAE tariff rate class models

 \rightarrow Lighting and large industrial class models estimated using simple econometric models

- \rightarrow Weather variables
- \rightarrow Monthly binaries
- \rightarrow Shift variables to account for changes in sales, such as LED replacement in street lighting
- \rightarrow Large industrial classes include out-of-model adjustments to account for known expansion and contractions.
 - \rightarrow These adjustments are based on correspondence between AES account reps and individual large customers

Peak model

Peak demand is driven by heating, cooling, and base load requirements derived from the rate class sales forecast models

Peak model drivers

- → Heating, cooling, and base-use energy requirements derived from tariff sales forecast models
- → Base-use energy allocated to end-use coincident peak loads. Highest load in winter lighting load

aes Indiana

Forecast Results

BASELINE ENERGY AND PEAK FORECAST

Class sales forecast

Excludes:

- \rightarrow Future EE savings
- \rightarrow Electric vehicle charging loads
- \rightarrow Future solar adoption

67

Energy and peak forecast

 \rightarrow Forecast excludes future EE, electric vehicles, and solar impact

Electric vehicle (EV) / solar PV forecasts

Woody Zhu, Assistant Professor, Carnegie Mellon University

Carnegie Mellon University

Introduction

Carnegie Mellon University

Wenbin Zhou PhD Student

AES

Erik Miller

Director, Resource Planning

Ryan Yang Load Forecast Analyst

Rob Whitworth

Sr Manger, T&D Planning

Victoria Cooper aes Indiana **EV Program Manager**

Distributed energy resource

Distributed energy resources (DERs) are small-scale energy generation and storage technologies that are connected to the electricity distribution system.

Electric Vehicles (EV)

Customer Solar

Objective

Number of solar installations in the United States

- \rightarrow Provide a long-term substation-level and territory-level forecast for the growth of EV and customer solar on AES Indiana's system.
- \rightarrow Provide base, high, and low forecasts for inclusion in AES Indiana IRP Scenario Analysis.
- 72 \rightarrow Reveal insights that inform strategic decision-making.

Result: EV unit prediction

A steadily accelerating market and increasing uncertainty over the coming decades, underscoring the need for:

- \rightarrow proactive infrastructure investments,
- \rightarrow resource planning, and
- \rightarrow strategic readiness to capitalize on rising demand.

Result: EV energy (MWh) prediction

A steadily accelerating market and increasing uncertainty over the coming decades, underscoring the need for:

- \rightarrow proactive infrastructure investments,
- \rightarrow resource planning, and
- \rightarrow strategic readiness to capitalize on rising demand.

Result: Customer solar unit prediction

A steadily accelerating market and increasing uncertainty over the coming decades, underscoring the need for:

- \rightarrow proactive infrastructure investments,
- \rightarrow resource planning, and
- \rightarrow strategic readiness to capitalize on rising demand.

Result: Customer solar energy (MWh) prediction

A steadily accelerating market and increasing uncertainty over the coming decades, underscoring the need for:

- \rightarrow proactive infrastructure investments,
- \rightarrow resource planning, and

76

 \rightarrow strategic readiness to capitalize on rising demand.

Key takeaways

 \rightarrow A rapid initial growth phase for EV/solar adoption, which gradually slows, with a plateau projected around 2036.

 \rightarrow At the substation level, our analysis identifies significant **spatial disparity** in growth magnitude and uncertainty.

 \rightarrow This pattern suggests that high-adoption substations are also areas of high forecast uncertainty.

Methodology

Real-world data Machine learning Forecast & insight model

Data overview

 \rightarrow PV data (Customer solar records from AES)

 \rightarrow EV data (Vehicle registration records from Indiana BMV)

 \rightarrow Power grid data (from AES)

- \rightarrow Outage records
- \rightarrow Load records

 \rightarrow Census data (from US Census Bureau) \rightarrow Demographic survey collected by ACS

Electric vehicle energy (MWh) forecast

- →Energy is a function of total EV units, average kWh/mile, and total number of miles/year/EV.
- →Three trend scenarios were modeled:
 - →Low, Base, High

Input	Base	High	Low	Source		
Average kWh/mile		0.345		Department of Energy & Energy Information Administration		
Miles/year/vehicle	5,300	8,000	4,000	Car & Driver		
Follow the same rule from IRP 2022						

Assumption Chart

Data overview: PV data

\rightarrow Rapid growth

→High PV demand in downtown Indianapolis \rightarrow Strong spatial heterogeneity

Data overview: EV data

- \rightarrow Concentration in AES Service Region
- → Fast-growing trend compared to other vehicle types (e.g. gas)
- → Strong spatial heterogeneity

Gas Vehicles

Distribution system analysis

 \rightarrow **Data sparsity** at substation and circuit level.

 \rightarrow **Need action** to meet growing demand.

 \rightarrow e.g. substation average ~24 installations (2025) to ~786 installations (2050 prediction)

Correlation analysis

Household income Household size

 \rightarrow EV / PV growth depends on other covariates →Need to include these covariates into the prediction

Median age

Takeaways from data analysis

\rightarrow DER Data shows considerable sparsity both temporally and spatially.

\rightarrow Individual unit records are highly random and unpredictable.

\rightarrow The growth of DER may depend on some key exogenous factors.

→Machine Learning Model for EV/PV Adoption →Base Forecast

→Statistical Framework for Uncertainty Quantification →High and Low Forecast

 \rightarrow Model Evaluation

EV/PV prediction model

Adoption in the next month in a region = **Exogenous Influence** + Endogenous Effect

Inflation-Adjusted Annual Median Household Income (2010-2023, Census Tract) **aes** Indiana

Substation-Level Load Time Series (Amp)

EV/PV adoption

Education attainment of population age 25 and over (2010-2023, census tract)

Annual House Heating Fuel Usage Percentage (2010-2023, Census Tract)

Outage Records

EV/PV Prediction Model

Adoption in the next month in a region = Exogenous Influence + Endogenous Effect

"The adoption in a substation may depend on the adoption level of its history and neighbors."

Neighbors and their history

installations for each grid

Uncertainty quantification

Conformal Prediction

A model-agnostic uncertainty quantification framework

Construct the high and low base prediction

Hyper-parameters selection (EV)

Supporting evidence to our key assumptions on the hyperparameters:

- \rightarrow Confidence level: Confidence with the low and high predictions
 - \rightarrow Quality and quantity of data + model evaluation
 - \rightarrow Our choice: 70%
- → **Tipping point:** The timing when fastest growth rate hits
 - \rightarrow Expert opinions: US tipping point arrives 2021~2031.
 - Camus Energy: Indianapolis region arrives at 2029
 - \rightarrow Our choice: 2029
- → **Penetration rate:** Saturated market size theoretical limit
 - → Multiple public surveys: >50% of American people will consider purchasing EV
 - e.g. 54%, 57%, 38+40=78%
 - > Our choice: 56%

90

Our approach to identifying an EV tipping point contained five key steps

Hyper-parameters selection (PV)

Supporting evidence to our key assumptions on the hyperparameters

Confidence level: Confidence with the low and high predictions \rightarrow Quality and quantity of data + model evaluation

 \rightarrow **Our choice:** 90% (Res) and 10% (Com)

Tipping point: The timing when fastest growth rate hits 15 \rightarrow SEIA: solar panel growth trend continue rising until 2029 16 \rightarrow Indiana ranks high (12th) in solar generation. 17 \rightarrow Policy incentives (e.g. ITC CEIC) effective until 2032 18 \rightarrow **Our choice:** 2032 19

Penetration rate: i.e. saturated market size theoretical limit \rightarrow Current highest state: California = 8% 91 \rightarrow **Our choice:** 7% (Res) and 4% (Com)

14

FRONTIERGROUP					
Los Angeles	CA	Pacific	166.7	649.9	1
Sacramento	СА	Pacific	159.8	83.9	14
Indianapolis	IN	North Central	142.1	126.1	12
Newark	NJ	Northeast	112.0	34.9	27
Hartford	СТ	Northeast	102.1	12.4	41
Charleston*	SC	South Atlantic	101.5	15.2	38

User portal

Global Hyperparameter

Meaning: Model's statistical confidence in the low and high forecast.

Penetration rate: 56.25%

Meaning: Theoretical limit of penetration rate (number of adoptions per capita within the network).

Tipping point: 2029-01

Meaning: The date when the decaying effect kicks in.

Total

Number of Vehicles

Energy Sales

Dashboard demo link:

EV:

https://wbzhou2001.github.io/EVPV-Dashboard/ev dashboard.html

PV:

https://wbzhou2001.github.io/EVPV-Dashboard/pv dashboard.html

References and more detail of hyperparameter selection are included.

Evaluation

Our method (in red) outperforms other methods significantly regarding predictive error

PV Adoption Prediction Over Time

Method	Aggregated MAE	Regional MAE	Regional STD
\mathbf{PR}	26.51	0.23	0.34
VAR	15.17	0.40	1.19
LSTM	14.96	0.21	0.37
Vanilla Hawkes	13.35	0.19	0.31
Covariate enhanced Hawkes	12.59	0.18	0.31

Prediction Error Comparison

Carnegie Mellon University

Evaluation

Our method (in red) achieves better uncertainty quantification (narrower prediction band)

Estimated Uncertainty Band Error Over Time Evaluation

Method		Full		Half		
	Val ↑	AggVal ↑	Size ↓	Val	AggVal ↑	Size ↓
LSTM	No (-)	No (-)	-	No (-)	No (-)	-
VAR	No (56%)	No (45%)	0.37	No (68%)	No (79%)	0.37
GPR	No (83%)	Yes (96%)	1.24	No (83%)	Yes (98%)	1.24
<u>Q</u> F'R	Yes (93%)	Yes (99%)	1.09	Yes (93%)	Yes (100%)	<u>1.09</u>
HST-Conformal	Yes 99%	Yes 100%	1.06	Yes 99%	Yes 95%	0.77

Uncertainty Band Validity (Probabilistic Coverage) and Efficiency (Size) Evaluation

2025 DSM market potential study introduction

Jeffrey Huber, Overall Project Manager and MPS Lead, GDS Associates

2025 MPS Topic Areas

\rightarrow MPS Overview	→Den
\rightarrow Past Studies and Scope Overview	\rightarrow M
\rightarrow Current Project Timeline	\rightarrow M
\rightarrow Market Research Activities	\rightarrow IRP
\rightarrow End-Use Analysis	
\rightarrow Additional Research	
→ Energy Efficiency Overview	
\rightarrow Major Topic Areas and Activities	
\rightarrow Methodological Considerations	

mand Response Overview

- lajor Topic Areas and Activities
- 1ethodological Considerations

Inputs

DSM overview: DSM process in the IRP

DSM overview: Past studies & current scope

ightarrow GDS completed prior market potential studies in coordination with the 2019 and 2022 IRP.

\rightarrow 2025 MPS scope of work includes:

- → End-Use Analysis & Primary Market Research
- → Secondary Market Research
- → Energy Efficiency Market Potential Study
- → Demand Response Market Potential Study
- \rightarrow Electrification Analysis
- \rightarrow DSM IRP Inputs

DSM overview: Deliverables overview

Anticipated Deliverables

- → Market Research Memo and Updated end-use indices used in future load forecasts
- \rightarrow Energy Efficiency Market Potential Study
- \rightarrow Demand Response Market **Potential Study**
- \rightarrow DSM IRP Inputs

- Items that are not an "outcome" of the DSM MPS: \rightarrow IRP load forecast
 - \rightarrow Used as an input into the DSM Market Potential Study
- \rightarrow EV forecast
 - \rightarrow Can be used to inform demand response potential of EV-related programs
- \rightarrow PV forecast
 - \rightarrow Can be used as an input to inform potential for battery storage programs
- \rightarrow Utility-sponsored electrification programs
 - \rightarrow Fuel-switching not directly considered, but GDS is looking at naturally-occurring electrification and impact to the load forecast

DSM overview: Project timeline

\rightarrow End-use analysis

- \rightarrow In field: January 2025
- → Result: February 2025

\rightarrow EE MPS

- → Draft results: March 2025
- → Final results: May 2025

\rightarrow Demand response

- → Draft results: March 2025
- → Final results: May 2025

\rightarrow IRP inputs:

- → Draft: April 2025
- → Final: May 2025

Market research: End-use analysis

 \rightarrow Research to improve upon inputs typically used in both the AES Indiana load forecast and the GDS Market Potential Study

- \rightarrow Includes both primary and secondary market research
- \rightarrow Email recruitment and on-line survey

\rightarrow Residential

- \rightarrow End-use market share
- \rightarrow Unit energy consumption

→ Small Commercial & Industrial

- \rightarrow End-use Intensity
- \rightarrow Distribution of customers by building type
- \rightarrow End-use saturation

Market research: End-use analysis (cont'd)

→ Data collection elements limited to items that may be answered accurately

\rightarrow Residential survey will collect:

- → Ownership, age, and count of electric end-use equipment across major end-use categories
- → Information on smart appliances and electric vehicles

\rightarrow Nonresidential survey will focus on:

- → Key end-uses: lighting, cooling, heating, ventilation, water heating, refrigeration
- \rightarrow Key equipment penetration
- \rightarrow Limited efficiency saturation (LEDs, controls)

Average Number per Home (Illustrative)

Market research: Survey samples

Market Segment	Sample Design	Sample Frame	# of Responses	Response Rate
Total Residential Population	95/5 Design = 391 Responses	15,320 (100%)	TBD	TBD%
Multifamily Homes	90/10 Design = 109 Responses	4,359 (28%)	TBD	TBD%
Single Family Homes	282 Responses	10,961 (72%)	TBD	TBD%
Nonresidential	90/10 Design >70 Responses	7,840	TBD	TBD%

Market research: Additional survey efforts

- \rightarrow The 2022 MPS market research included a willingness-to-participate (WTP) survey to collect consumer awareness and willingness to participate in various programs or purchase various equipment, such as:
 - \rightarrow EE Equipment (HVAC, Hot Water, Appliances, Lighting)
 - \rightarrow DR Programs (AC Cycling, TOU Rates)
 - \rightarrow Electric Vehicles/Solar PV
- \rightarrow GDS has collected similar research in other nearby jurisdictions with minimal differences across respondents.
- \rightarrow For the 2025 MPS we intend to offer a WTP survey that collects additional information on:
 - \rightarrow Additional demand response opportunities
 - \rightarrow Potential impacts of other funding sources (ex. IRA funds)
 - \rightarrow Additional Distributed Energy Resource opportunities (that might not directly tie to the MPS, but could be useful future information to AES-IN initiatives)

EE overview: Flow chart

EE overview: Data input needs

\rightarrow Starts with a utility data request to understand:

- \rightarrow Timeframe of the analysis
- \rightarrow Current utility sales forecast projections and sales by customer/industry codes
- \rightarrow Current avoided costs of energy, capacity, transmission/distribution
- \rightarrow Global economic inputs (inflation rate, discount rate, reserve margin requirement, line losses)
- \rightarrow Current program/measure offerings
- \rightarrow Current incentive levels and other program costs
- \rightarrow Current participation levels and EM&V results
- \rightarrow Any relevant DSM policy considerations

EE Overview: Market Data

\rightarrow Understanding the load forecast

- \rightarrow Sales and Customer Counts
- \rightarrow Residential (single family/multifamily ; market rate/income qualified)
- \rightarrow Commercial (by building type)
- \rightarrow Industrial (by industry type)

\rightarrow Understanding eligible sales

- \rightarrow Percentage of sales from "opt-out" customers
- \rightarrow Percentage of sales from other "atypical" facilities with limited traditional EE opportunities

¹⁰⁵ Understanding consumption by end-use

Illustrative example of opt-out sales (from 2022 AES-IN Market Potential Study

EE overview: Market data (cont'd)

In addition to changes in equipment stock, we also look to incorporate impacts that equipment standard changes have had on consumption.

EE overview: Measure data

\rightarrow Develop an AES-Indiana specific measure database of:

- → Measure Savings (Annual Savings & Peak Demand Savings)
- \rightarrow Measure Effective Useful Life (EUL)
- \rightarrow Measure Costs (either full costs or incremental costs)
- \rightarrow Measure Incentives

- \rightarrow Base Saturation Estimates (i.e., % of homes with a specific type of equipment)
- \rightarrow EE Saturation Estimates (% of equipment that is already efficient)

Derived primarily from the Indiana TRM w/ support from additional regional resources

Derived from a blend of primary market research and regional/national data sources

EE overview: Potential overview

TECHNICAL POTENTIAL

All technically feasible measures are incorporated to provide a theoretical maximum potential.

ECONOMIC POTENTIAL

All measures are screened for costeffectiveness using the **Utility Cost Test**. Only cost-effective measures are included.

	Not Technically Feasible		TECHNIC	AL F
Types of Energy Efficiency Potential	Not Technically Feasible	Not Cost- Effective	EC	ON
	Not Technically Feasible	Not Cost- Effective	Market & Adoption Barriers	Д

ACHIEVABLE POTENTIAL

Cost-effective energy efficiency potential that can practically be attained in a real-world program delivery case, assuming that a certain level of market penetration can be attained.

POTENTIAL

OMIC POTENTIAL

ACHIEVABLE POTENTIAL

EE overview: Estimating potential

RESIDENTIAL EQUATION

NON-RESIDENTIAL EQUATION

Savings Factor

Savings Factor

- → Residential sector uses a "bottom-up" approach based on total number of households
- → Commercial Sector uses a topdown approach that disaggregates sales by building type, end-use, and measure type
- → Industrial also is top-down and applies end-use level savings factors to end-use sales due to high variability of equipment in industrial sector

EE overview: Adoption rates

EE overview: EE MPS outputs

ightarrow Energy savings by potential type	→An
\rightarrow Technical, Economic, Achievable, etc.	\rightarrow An
ightarrow Gross and net savings	→Le
ightarrow Incremental annual and cumulative annual	an
savings (MWh) by:	\rightarrow To
\rightarrow Sector	\rightarrow To
\rightarrow Home/Building Type	
\rightarrow Income Type	
\rightarrow End Use	
→ Program	
→ Incremental and cumulative annual demand savings	
\rightarrow By Season	

- nnual incentive and non-incentive costs
- nnual NPV benefits and UCT ratios
- evelized costs of energy efficiency nd supply curves
- op program measures
- op non-program measures

DR overview: Potential overview

DR overview: Programs considered

- \rightarrow DLC Central AC/Thermostats
- \rightarrow DLC –Room ACs
- \rightarrow DLC Smart Appliances
- \rightarrow DLC Water Heaters
- \rightarrow DLC Electric Space Heat
- \rightarrow DLC Lighting
- → Battery Energy Storage
- \rightarrow Electric Vehicle Charging
- \rightarrow Curtailment Agreements
- \rightarrow Demand Bidding
- \rightarrow Capacity Bidding
- \rightarrow Time of Use Rates
- \rightarrow Behavior DR

DR overview: Estimating participation

- \rightarrow Eligible customers are those with the appropriate end use for a program (e.g., those with central AC for an AC control program).
- \rightarrow A hierarchy is used to prevent double-counting of savings from programs that affect the same end uses. It is assumed for this study that customers cannot participate in multiple programs that affect the same end uses. Participants of higher priority programs are subtracted from the eligible market for the lower priority programs.
- \rightarrow Market research and secondary research will help develop participation rates, which simulate the rate at which participants can be attained over the period of the study. These participation rates are applied to the eligible customers for each program.

DR overview: Determining peak load potential

- → Analysis will be conducted using GDS Demand Response Model (DR Model). The model considers approximately 50 required inputs, including expected life of equipment, coincident peak kW load reductions per customer, proposed incentives, and program related expenses.
- → Utility-specific data on avoided costs, line losses, and discount rates will be incorporated. The primary benefit of DR is avoided generation capacity but also includes considerations for avoided transmission and distribution benefits.
- → The DR model determines cost-effectiveness using a variety of tests, such as UCT and TRC, as well as the estimated potential demand savings for each program.
- → Potential savings will be estimated for each season, dependent on both per participant reduction estimates as well as customer participation/eligibility across seasons.

Electrification overview: Analysis approach

 \rightarrow It's different from market potential study in that it does not examine utility intervention for fuel-switching.

 \rightarrow Similar analysis was performed for 2022 MPS/IRP.

- \rightarrow The analysis will look at the updated economics of electrification for key building technologies (heat pumps, water heating, clothes dryers) to understand overall benefits and costs.
- \rightarrow The analysis will utilize a bass diffusion to estimate a range of possible outcomes.
 - \rightarrow Calibrate curves based on known historical adoption information and market research
 - \rightarrow If possible, use data from WTP and customer attitudes on impacts of federal funding on future electrification adoption levels
 - \rightarrow Account for building electrification effects already present in the baseline forecast
- \rightarrow The analysis will help determine whether any adjustments to the load forecast to account for future electrification is appropriate.

Electrification overview: Results from 2022

Scenario	2023	2025	2030	2035	2040	2042	Percent Above Base Rate Forecast
Low	8,910	16,954	52,983	109,200	163,058	187,904	1.3%
Medium	10,709	22,653	74,905	181,388	301,705	347,890	2.4%
High	12,727	29,661	111,370	329,653	598,830	654,627	4.4%

- \rightarrow In a 2022 study, additional load due to electrification provided a range of 1.3% to 4.4% above the AES base forecast.
- \rightarrow As a comparison, NREL's Electrification Futures Study Reference Case was modeled as showing 0.9% growth above the base forecast by 2042.

DSM in the IRP: Expected input structure

DSM inputs are currently proposed to be:

- →Sector based (residential, income-qualified, and nonresidential)
 - → Residential and non-residential will be selectable resources; income-qualified will be a "going-in" resource
- →Three time-vintages (2027-2029, 2030-2032, and 2033-2045)
- →Based on RAP and/or "Enhanced" RAP (to be defined later)
- \rightarrow Based on net savings
- →Costs will reflect utility incentive and non-incentive costs (less NPV T&D benefits)
- \rightarrow Include hourly profiles for each bundle

Final Q&A and next steps

Public Advisory Meeting

- \rightarrow A Technical Meeting will be held the week preceding each Public Advisory Meeting for stakeholders with nondisclosure agreements. Tech Meeting topics will focus on those anticipated at the next Public Advisory Meeting.
- → Meeting materials can be accessed at *www.aesindiana.com/integrated-resource-plan*.

Thank You

IRP acronyms

Note: A glossary of acronyms with definitions is available at https://www.aesindiana.com/integrated-resource-plan.

IRP acronyms

- → ACEE: The American Council for an Energy-Efficient Economy
- → AMI: Advanced Metering Infrastructure
- → BESS: Battery Energy Storage System
- → BNEF: Bloomberg New Energy Finance
- → BTA: Build-Transfer Agreement
- → C&I: Commercial and Industrial
- \rightarrow CAA: Clean Air Act
- \rightarrow CAGR: Compound Annual Growth Rate
- \rightarrow CCGT: Combined Cycle Gas Turbines
- \rightarrow CCS: Carbon Dioxide Capture and Storage
- \rightarrow CDD: Cooling Degree Day
- \rightarrow COD: Commercial Operation Date
- \rightarrow CONE: Cost of New Entry
- \rightarrow CP: Coincident Peak
- → CPCN: Certificate of Public Convenience and Necessity
- \rightarrow CT: Combustion Turbine
- \rightarrow CVR: Conservation Voltage Reduction
- → DER: Distributed Energy Resource
- \rightarrow DG: Distributed Generation
- → DGPV: Distributed Generation Photovoltaic System
- \rightarrow DLC: Direct Load Control
- → DOE: U.S. Department of Energy
- \rightarrow DR: Demand Response
- \rightarrow DRR: Demand Response Resource
- → DSM: Demand-Side Management
- \rightarrow DSP: Distribution System Planning

- → EE: Energy Efficiency
- → EFORd: Equivalent Forced Outage Ra
- → EIA: Energy Information Administration
- → ELCC: Effective Load Carrying Capabi
- → EM&V: Evaluation Measurement and V
- \rightarrow EV: Electric Vehicle
- → GDP: Gross Domestic Product
- \rightarrow GT: Gas Turbine
- \rightarrow HDD: Heating Degree Day
- → HVAC: Heating, Ventilation, and Air Co
- \rightarrow IAC: Indiana Administrative Code
- \rightarrow IC: Indiana Code
- → ICAP: Installed Capacity
- → ICE: Internal Combustion Engine
- → IRP: Integrated Resource Plan
- → ITC: Investment Tax Credit
- → IURC: Indiana Regulatory Commission
- \rightarrow kW: Kilowatt
- \rightarrow kWh: Kilowatt-Hour
- \rightarrow LED: Light Emitting Diode
- → LMR: Load Modifying Resource
- → LNBL: Lawrence Berkeley National La
- → Max Gen: Maximum Generation Emer
- → MIP: Mixed Integer Programming
- → MISO: Midcontinent Independent System
- → MPS: Market Potential Study
- → MW: Megawatt

	\rightarrow	NDA: Nondisclosure Agreement
ate Demand	\rightarrow	NOX: Nitrogen Oxides
n	\rightarrow	NREL: National Renewable Energy Laboratory
ility	\rightarrow	PPA: Power Purchase Agreement
Verification	\rightarrow	PRA: Planning Resource Auction
	\rightarrow	PTC: Renewable Electricity Production Tax Credit
	\rightarrow	PRMR: Planning Reserve Margin Requirement
	\rightarrow	PV: Photovoltaic
	\rightarrow	PVRR: Present Value Revenue Requirement
onditioning	\rightarrow	PY: Planning Year
	\rightarrow	RA: Resource Adequacy
	\rightarrow	RAN: Resource Availability and Need
	\rightarrow	REC: Renewable Energy Credit
	\rightarrow	REP: Renewable Energy Production
	\rightarrow	RFP: Request for Proposals
	\rightarrow	RIIA: MISO's Renewable Integration Impact Assessment
n	\rightarrow	SAC: MISO's Seasonal Accredited Capacity
	\rightarrow	SCR: Selective Catalytic Reduction System
	\rightarrow	SMR: Small Modular Reactors
	\rightarrow	ST: Steam Turbine
	\rightarrow	SUFG: State Utility Forecasting Group
iboratory	\rightarrow	TRM: Technical Resource Manual
gency Warning	\rightarrow	UCT: Utility Cost Test
	\rightarrow	UCAP: Unforced Capacity
em Operator	\rightarrow	WTP: Willingness to Participate
	\rightarrow	XEFORd: Equivalent Forced Outage Rate Demand excluding
		causes of outages that are outside management control

APPENDX

Short-term action plan progress

- → June 2023 July 2024 AES Indiana issues & evaluates all-source RFP for approximately 1,000 MW of firm capacity in 2023 to fill capacity need identified in 2022 IRP.
- → January 2024 AES Indiana receives IURC Order approving the CPCN for Pike County Battery Energy Storage (200 MW) evaluated through the RFP process. Project estimated COD Q1 2025.
- November 2024 AES Indiana receives IURC Order approving the CPCN for repowering Petersburg Units 3 & 4 from coal to natural gas.
 Project estimated completion – Unit 3 repowered in first half of 2026; Unit 4 repowered in second half 2026.
- → Expected in Q2 2025 AES Indiana anticipates IURC Order approving the CPCN for the Crossvine Solar + Storage project (85 MW solar; 85 MW 4-hr battery) identified through the RFP process. Project estimated COD June 2027.
- → January 2025 AES Indiana receives IURC Order for the implementation of DSM programs in 2025-2026. DSM portfolio will target approximately 130,000 MWh of net savings per year or ~1.1% of forecasted sales.

Appendix: EV Prediction

Appendix: Customer solar prediction

Result: Sub-station EV Prediction

Final predictions and their uncertainty vary significantly across substations

Top 2

Top 4

Top 5

Result: Sub-station EV Prediction

EV Total Load

Result: Sub-station PV Prediction

Final predictions and their uncertainty vary significantly across substations

Top 5

Top 6 Carnegie Mellon University

Year

2048

Result: Sub-station PV Prediction

aes Indiana

Appendix: Load Data

Peak

Total

oad Over Time for BRIDGE

Substation-Cavele Mellon University

Appendix: Outage Data

Temporal View

Spatial View

Carnegie Mellon University

Appendix: Transmission Topology

Match data from multiple sources to each household

Carnegie Mellon University

Appendix: Demographic Factors

e.g., Household Income

2015

2018

2019

2020

2021

Carnegie Mellon University

Appendix: More Results

EV Residential Units

EV Commercial Units

EV Residential Load

EV Commercial Load

Appendix: More Results

PV Residential Units

PV Commercial Units

PV Residential Generation

PV Commercial Generation

Appendix: Facts about PV installations

State	Total # of Houses	Total # of Solar Installed	Total % of Solar Installed
California	14,392,140	1,183,653	8.2%
Florida	9,865,350	~ 99,530	1.0%
Hawaii	561,066	86,866 <u>×</u>	15.5%
Massachusetts	2,998,537	~ 118,273	3.9%
New York	8,488,066	112,424 <u>×</u>	1.3%
Texas	11,589,324	~ 125,003	1.1%

US PV Installation and forecasts by sectors, 2014 - 2029 (by Solar Energy Industries Association)

US PV adoption rate, where California has approximately 8.2% penetration rate.

Appendix: Details on Tipping Point

- → **Definition:** Date when the **5% EV adoption** mark is hit.
 - \rightarrow This is equivalent to the time when EV demand reach fastest growth, as defined in our model.
- \rightarrow Camus Energy gave an estimation based on their feeder-level EV projection trajectory as part of their study analyzing investment optimization for AES.
- → **Source:** National Renewable Energy Laboratory's (NREL) Demand-Side Grid (dsgrid) TEMPO Light-Duty Vehicle Charging Profiles, U.S Energy Information Administration's Annual Energy Outlook.
- \rightarrow **Result:** the mark occurs in 2029.

Version & Time

Figure: Diagram showing the theoretical evolution growth trend of EV adoption.

Appendix: Details on Tipping Point (Cont.)

Fig 4. Residential EV adoption for AES Indiana service territory by case. Reference (blue) refers to the Energy Information Administration's Annual Energy Outlook. EFS (green) refers to NREL's Electrification Futures Study.

